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On Stability of Some General Random Dynamical
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We consider a new random dynamical system which generalizes Markov pro-
cesses corresponding to iterated function systems and Poisson driven stochastic
differential equations. It can be used as a description of many physical and bio-
logical phenomena. Under the suitable assumption will be proved its stability.
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1. INTRODUCTION

In this paper we propose a new model generalizing Poisson stochastic
differential equations and iterated function systems. A Poisson process is
one of the fundamental descriptions for physical and biological phenom-
ena—these phenomena are generally described by stochastic differential
equations with Poisson drift rather than the Wiener drift (see refs. 4, 7,
14, 26). In fact, Wiener processes may be obtained when we pass to the
limit with intensivity of the Poisson process. However, it seems that we
obtain more realistic models with Poisson drift. A large class of applica-
tions of such models, both in physics and biology, is worth mentioning
here: the short noise, the photoconductive detectors, the growth of the size
of structural population, the motion of relativistic particles, both fermions
and bosons, and many others (see refs. 7, 14, 16, 17, 26). In 1984 Gaveau
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et al.® derived the Dirac equation using the formulation of Poisson pro-
cess.

On the other hand, it should be noted that most Markov chains,
appear among other things, in statistical physics, and may be represented
as iterated function systems (see ref. 15). They are also intensively studied
as a mathematical model of learning and random walks and have turned
out to be a very useful tool in the theory of cell cycles (see refs. 18, 19,
29 and references therein). Recently, iterated function systems have been
used in studying invariant measures for the Wazewska partial differential
equation which describes the process of reproduction of the red blood cells
(see ref. 21). Similar nonlinear first-order partial differential equations fre-
quently appear in hydrodynamics (see ref. 28).

Today iterated function systems are considered mainly because of
their close connection to fractals and semifractals. Indeed, a fractal set
(analogously semifractal) may be obtained as a support of an invariant
measure for such systems (see refs. 19, 20).

We formulate criterion for stability. There is excellent literature
devoted to such problems (see ref. 25). Different classes of Markov pro-
cesses have been studied e.g. random dynamical systems based on skew
product flows and piecewise-deterministic Markov processes introduced
by Davis (see refs. 1, 3). Our model generalizes the latter. Besides phys-
ics and biology there is an enormous variety of their applications in
engineering systems, operation research, management science, econom-
ics and applied probability (for more details see ref. 3 and references
therein).

Usually the proof of stability is based on the theory of Meyn and
Tweedie presented in ref. 25 which, to the best of our knowledge, is not
well adapted to general Banach spaces. In fact, it is extremely difficult to
ensure that the process under consideration satisfies some ergodic proper-
ties on a compact set. However assumption of compactness is restrictive
if we want to apply our model in physics and biology. Indeed, the phase
space is usually one of the spaces of functions and the above assumption
is therefore not satisfied. In our paper, we apply the theory of concentrat-
ing Markov operators developed in ref. 29.

Let (X, -|)) be a separable Banach space. Let (2, X,P) be a proba-
bility space and let (z,),>0 be a sequence of random variables 7,: Q2 — Ry
with 1o =0 and such that the increments A1, =1, —1,_1, n €N, are inde-
pendent and have the same density g(f) =ie ™.

We have given a finite sequence of semidynamical systems IT;: R x
X—X,iel={l,..., N}, a probability vector p;: X —[0,1], i€l and a
matrix of probabilities [p;;]i jer, pij: X —10,1], i,jel.



On Stability of Some General Random Dynamical System 37

Let S be a compact metric space. By F we define the Borel o-algebra
on S. Let (¢,)n>0 be a sequence of random elements ¢,:2— S, neN with
the same distribution «, i.e. k(A)=P(¢; !(A)) for AeF and neN. Obvi-
ously «(§)=1. We assume that (£,),>0 is independent on (7;),>0. Finally
let ¢g: S x X — X be a continuous function. We write gy, =¢(s, -) for s€S.

Now we define X-valued stochastic process (£,),>0 in the following
way. We choose an initial point x € X and we randomly select an integer
i €l in such a way that probability of choosing i is equal to p;(x). Having
x and i we define

&1=q¢ (i (z1, %))

Now we choose i1 €1 in such a way that the probability of chosing i; is
equal to p;;, (§1) and is independent upon the variable ¢;. Then we define

& =g, (M (12 — 11, &1)).

Finally, given &,, n >2, we choose i, in such a way that the prob-
ability of choosing i, is equal to p; ,;,(§,) and is independent upon
ClyeoosCny E1,..., &, Then we define

Entl =d4q¢,11 (nin (Tht1 — T, sn))

We are interested in the evolution of distributions corresponding to
this random dynamical system. Namely, let © be the distribution of the
initial random vector x. For n € N we denote by u, the distribution of &,,
i.e.

() =P(&: € 4) = [ P(6s(0) € A,

where &,(x) means the process started from the initial point x and A is an
arbitrary Borel set in X. We will prove that there exists a distribution .
on X such that u, — w. (weakly) as n — oo for arbitrary initial distribu-
tion u on X.

The examples below show that our model generalizes some very
important and widely studied objects, namely dynamical systems gener-
ated by iterated function systems and Poisson driven stochastic differential
equations.

Example 1. Iterated funcion systems.
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Let X be a separable Banach space, w;:X — X, i €I, continuous func-
tions and let (pi1,..., pn) be a probability vector, i.e. p; >0, Y, .; pi=1.

Assume that IT; (¢, x) =x for i€, t e Ry and x € X. Moreover, assume
that S=1, F=2! and «({i}) = p;. Finally, assume that ¢(i, x) = w; (x) for
iel and xeX.

Let p be the distribution of the initial random vector x. Simple cal-
culation shows that the distribution w, of the random vector &, is given
by

[S T inel

But this means that w, = P"u, where P is the well known (see refs.
18, 19, 29) transition operator corresponding to iterated function system
{(w;, pi);i el}. It is of the form

N
PM=Zpiuow,»_1-
i=1

Example 2. Poisson driven stochastic differential equations.

Consider a stochastic differential equation of the form
dé=a)dt+bE)dp for t>0

with the initial condition

£(0) =&,

where a,b: X — X are Lipschitzian functions, X is a separable Banach
space, (p(t)) >0 is a Poisson process and the initial condition &; is a ran-
dom variable on © with values in X, independent on (p(1)) 150"

Let S=1={1} and let 1 (¢, x) =TI(t, x) be the unique solution of the
Cauchy problem

du 0)—
E—a(u(t)), u(0)=x.
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Moreover, let g1 (x) =qg(x) =x + b(x). It is easy to check that u, = P"pu,
n €N, where P is the transition operator corresponding to the above sto-
chastic equation and given by

PM(A)=// re M1 a(q(r(t, x))dtp(dx).
x JRr,

(Here 14 stands for the characteristic function of A.)

The paper is divided into five sections. Section 2 contains further
notation and some known facts concerning asymptotic stability of Markov
operators crucial for our considerations. In Section 3 we state all necessary
hypotheses and reformulate our problem in a more convenient form. Sec-
tion 4 contains some technical lemmas. The main results are contained in
the last section. For related results see refs. 1-3, 10-13, 18, 22-24, 27, 29—
31. The basic facts on Markov processes and stochastic differential equa-
tions can be found in refs. 2, 5, 7, 19.

2. NOTATION AND SOME USEFUL FACTS

Let (X, 0) be a complete separable metric space. By B(x, r) we denote
the open ball with center at x and radius r. For a subset A of X, clA,
diam A, and 14 stands for the closure of A, diameter of A and the char-
acterisic function of A, respectively.

By B(X) we denote the o-algebra of Borel subsets of X and by M=
M(X) the family of all finite Borel measures on X. By M| =M {(X) we
denote the space of all u e M such that u(X)=1 and by M; the space
of all finite signed Borel measures on X. The elements of M are called
distributions.

As usual, by B(X) we denote the space of all bounded Borel measur-
able functions f:X— R and by C(X) the subspace of all continuous func-
tions. Both spaces are considered with the supremum norm |- ||o.

For fe B(X) and ue M; we write

<fin> =/xf(x)u(dx).
We introduce in M, the Fortet—Mourier norm || - |, (see ref. 6) given by

lwllo=sup{l < fiu>|:feF,} for peMs,

where F, is the set of all f e C(X) such that |f(x)|<1 and |f(x) — f(V)I<
o(x,y) for x,yeX.
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We say that a sequence (u,), u, € M, converges weakly to a measure
ueMif

Iim < f,up,>=<f,u> forevery feC(X).

n—oo

It is well known (see ref. 5) that the convergence in the Fortet-Mourier
norm | - ||, is equivalent to the weak convergence.
An operator P: M — M is called a Markov operator if

P(Apy+rou2) =A1Puy+2r2Puy for Ay, AoeRy and puy, poeM

and
Pu(X)=n*) for wpeM.
A linear operator U: B(X) — B(X) is called dual to P if
<Uf,u>=<f,Pu> for feB(X) and ueM.

A Markov operator P is called a Feller operator if it has a dual
operator U such that

UfeCX) for feC(X).

An operator P: M — M is called essentially nonexpansive if there
exists a metric ¢ equivalent to o such that P is nonexpansive with respect
to the norm |- |3, i.e.

[Pt —Puallp <limr —pally for i, poe M.

It can be proved that every essentially nonexpansive Markov operator
is a Feller operator (see ref. 29).

A measure w4 is called invariant (or stationary) with respect to P if
Py, =pus. A Markov operator P is called asymptotically stable if there
exists a stationary measure u, € M; such that

lim P"u=pu, forevery ueMj.

n—oo
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Obviously a measure u, satisfying the above condition is unique.

A sequence of distributionss (u,) is called tight if for every ¢ >0 there
exists a compact set K C X such that u,(K)>1—¢ for every neN.

It is well known (see refs. 2, 5) that every tight sequence of distribu-
tions contains a weakly convergent subsequence.

We say that a Markov operator P: M — M is tight if for every u e
M the sequence of iterates (P"u) is tight.

We denote by C.(X), ¢ >0, (C. for abbreviation), the family of all
closed sets C for which there exists a finite set {xi,x2,...,x,} CX (e-net)
such that C C|J7_, B(xi, ¢).

An operator P is called semi-concentrating if for every ¢ >0 there exist
C eCe(X) and 6 > 0 such that

lim inf P"u(C)>6 for peMj. (2.1)
n—oo

Proposition 2.1 (ref. 23). Let P be a nonexpansive Markov oper-
ator. Assume that for every € >0 there exists a number 6 >0 having the
following property: for every pair of measures wi, Uz € Mj there exist a
Borel subset A of X with diam A <e and a number ngeN such that

Py (A)>0 for k=1,2.
Then
Jim | PPy — P usllo =0 for every i, ua € M.
For ue M we consider the limit set:

L) = {v € M : there exists (ny) C (n)

(2.2)
such that lim ||P""/L—v||Q=O}
k—00
and
L= J L. (2.3)

;LE./\/(I

Proposition 2.2 (ref. 29). Let P be a nonexpansive and semi-con-
centrating Markov operator. Then
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() P has an invariant measure;
(i1) L(u)#£@ for arbitrary pue My;
(i) L(M)) is tight.

Finally, we introduce the class ® of functions ¢: R, — Ry satisfying
the following conditions:

(1) ¢ is continuous and ¢(0)=0;
(i) ¢ is nondecreasing and concave;
(ii1)) @(x)>0 for x>0 and lim,_,  ¢(x) =00c.
By @&y we denote the family of all functions satisfying conditions (i)
and (ii). Observe that for every ¢ € ® the function p, =¢op is again a

metric on X. Moreover p, is equivalent to p. For notational convenience
we write F, and ||- ||, in the place of Fp, and | -|lo,, respectively.

Proposition 2.3 (ref. 23). Assume that a function w € ®( satisfies
the Dini condition

€
t
/?dr<oo for some €>0. 2.4
0

Let a€[0, 1). Then the inequality
w(t)+eat) <et) for t=0 2.5)

admits a solution of ®.

3. ASSUMPTIONS AND REFORMULATION OF THE PROBLEM
Assume that we have given the system (I1,q,p) on a separable
Banach space defined in Section 1. Recall that IT; :Ry x X - X, i€/, is
a semidynamical system, i.e.
I1,(0,x)=x forevery i€l, xeX (3.1

and

IT;(s+¢t,x)=T1;(s, I1;(¢t,x)) for every s,teR;, iel and xeX.
(3.2)
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We assume that IT; : Ry x X — X, i €[ are continuous and that there exists
xx € X such that

/ e M| (7, xs) — x| dt <oco for iel. (3.3)
Ry

Moreover we assume that the functions p;;, i, j €1, satisfy the follow-
ing condition

N
Y o 1pij@) = piyMI<w(llx—yl) for x,yeX, iel, (3.4)
j=1

where the function w € ®¢ satisfies condition (2.4) and
y=inf {p;j(x):i,jel, xeX}>0. (3.5)

Further we assume that there exist constants L > 1 and « € R such
that

N
Zpij(y)||l'lj(t,x)—l'lj(t,y)||<Le""||x—y|| for x,yeX, iel
j=1

(3.6)

Finally we assume that there exists a constant L, >0 such that

/SIIQs(X)—qs(y)IIK(dS)<Lq||x—y|| for x,yeX. (3.7

Let (t4)n>0 and ($n)n>0 be sequences of random variables introduced
in Section 1. Let (én)@0 be the corresponding random dynamical system
described in introduction. This process is not Markovian. We extend the
process (£,),>0 in such a way that the new process becomes Markovian.
In this purpose consider the space X x I endowed with the metric p given
by

o((x, 1), v, ))=llx=yl+poli,j) for x,yeX,ijel, (3.8)
where

c, 1if i#j],

3.9
0, if i=j (39)

po(i,j)={

with the constant ¢ suitably choosen.
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Let (n4)n>0 be a sequence of random elements 7, :Q2— I, neN, such
that

P(no=i | §o=x)=pi(x)

and

P(nn=j | na-1=1i, &s=x)=pij(x) for n=1,2,...
Assume that (,),>0 is independent upon (7,),>0 and that for every neN
the random variables ¢y, ..., -1, 01,..., Np—1 are also independent.

Given an initial random variable & we consider the random process
(¢4)n>0 defined by the formula

&n=q;, (I, | (ATy, &) for n=1,2,...
Now we consider a stochastic process (S,,, ”")n>0' Clearly (én, ﬂn) Q-
X x I. Tt is easy to check that this process admits the Markov property.
Let uo be the distribution of the initial random variable (&, 19), i.e.
o(A)=P((%0.m0) €A) for AeB(X xI).
For neN we denote by u, the distribution of (&,, n,), i.e.

pn(A)=P((r, np) € A) for AeB(X x1I).

Proposition 3.1. There exists a Feller operator P : M(X x I) —
M(X x I) such that

Uny1=Pu, for every neN. (3.10)

Moreover, the operator P is given by the formula

N o0
Pu(A) = re M 3.11
p(A) ;/xzfo/se (3.11)

1a(gs (M, %)), j) pij(x) k(ds) dt p(dx di)
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and its dual operator U by the formula
N ico
Uf(x,i):Z/O /f(qs(nj(z,x)),j)p,-j(x)xe*“;c(ds)dt. (3.12)
j=1 S

Proof. The proof is standard and we only give the main ideas of it.
Let (x,i)e X x I be given and let f € C(X x I). Let E denote the mathe-
matical expectation with respect to the probability P. We have

E(f(gn+lv 77)1+1)) Z/X ; Sx, i)//-n+1(dxdi)= <f, hnt1>- (313)

Since (£,),>0 are independent on (t,),>0 we have

N
E(f(%_n+ls 77n+1)) = Z /;2 f(%m (Hfln+1 (Afn+l’ En))» 77n+1)1{a):n,,:i}d]P-
i=1

On the other hand, since At,;; and ¢,y; are independent on 7,4, 1,
and &, we obtain

N reo
B Gremn) = [ 30 [ [ £lamyen). i)y
X ]=1

Xk (ds)dt pu,(dx di).

Now, using notation (3.12) we can write

B((Eerman)) = [ VP adxd= <Ufiun>. (.14

XxI
Further, simple calculation shows that:

1) Uf>0for feB(XxI)and f>0;
() Ulxxr=1lxxr;

(i) Uf, 0 for f,e B(X xI) and f, ] 0;
iv) UfeCXxI) for feC(X xI).
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Therefore by ref. 18 there exists a Feller operator P such that

<Uf,un>=<f,Pup,> for feB(XxI) and peMi(XxI).
(3.15)

By (3.13), (3.14) and (3.15) for arbitrary A € 5(X x I) we have
Unt1(A)= <1, pa1> = <Ulyg,uy> =<1y, Pup> =Pu,(A),
which proves condition (3.10). Moreover, by (3.15) and (3.12) we have

Pu(A) = <lg, Pu>=<Uly,u>

N o0
= fo 1/0 /;ke_’\’IA(qs(Hj(t,x),j))pij(x)/c(ds)dt,u(dxdi),
j=1"7%

which completes the proof. |

4. LEMMAS

Lemma 4.1. Assume that the system (IT,q, p) satisfies conditions
(3.1)—(3.7). Moreover assume that

LLq+%<l, 4.1)

where L, L, and o are constants appearing in conditions (3.6), (3.7) and
A 1s the intesivity of the Poisson process which governs the increment At,
of random variables (7,),>0. Then the operator P given by (3.11) is essen-
tially nonexpansive.

Proof. Let we & be given by condition (3.4). Let ¢ € ® be such
that inequality (2.5) holds with

_ ALL,
a= . 4.2)
A—a

Since a <1 (see (4.1)), ¢ exists by virtue of Proposition 2.3.
Let ceRy be such that

p(c)>2 4.3)
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and let p be given by (3.8) and (3.9).
Fix feF,. To complete the proof it is enough to show that

|Uf(x3l)_Uf(y7])|gw(g((x’l)9(y’])))v fOr (x’i)v(y’j)EXXIs
4.4)

where the operator U is given by (3.12). From (3.9) and (4.3) it follows
that (4.4) holds if i # j.
By (3.12) and the last inequality we have

\Uf(x,i)=Uf(y, i)l
N +00

<[ [ ) )
j=1
—fas(T1;, ). j) pij ) |k (ds)dt

N
< Z'Pij(x)_Pij()’)|
=1
N +oo
3 [ [ 000 (lan (1000 = au 11 ) ) s
=1

and using in turn (3.4), (2.4), the Jensen inequality and finally (3.7), (3.6)
and (2.5) we obtain

[Uf(x,i)=Uf(y,i)l
+00 N
< w(llx—yll)+/0 /S/\e_“w (Zpij(y)llqs(l'lj(t,X)) —q,(I; (1, y))ll) K (ds)dt

Jj=1

N +00
<o(lx—ylh)+¢ (Z/O /Ske_“pij(y)llqs(l'lj(t,X)) _QX(Hj(lvy))”K(dS)dt)
j=1

+00 N
<ollx -yl +¢ (/0 3e 3 pir (LT (¢, ) — T, y>||dt)

j=1
+00
<o(lx—yh+e (ALanx =yl /0 e““”dr)
= w(lx—y)+elx -yl <e(x -y,

which completes the proof. ||
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Lemma 4.2. Suppose that hypotheses of Lemma 4.1 hold. Then
there exists a bounded set A C X x I such that

inf  liminf P"u(A) > 0.
HEM(X xI) n—>00

Proof. Put
Vix,i)=|x| for (x,i)eXxI.
Claim. There exist a,b€Ry, a <1, such that
UV(x,i)y<aV(x,i)+b for (x,i)eX xI. (4.5)

Indeed, using (3.12) and the definition of V we have

N +o00
UV(x,i)=y. /0 /S g (T1j (2, X)) 1™ pij () (ds)dt
j=1

N +00
<y /0 /S s (T2, 1)) — g5 (T (1, x2) e~
=

X_Pij(x)lc(ds)dt
N +00

+ZL /S ||C]5(H]([, x*))”)"e_Mpik(x)K(dS)dt,
j=1

where x, is given by (3.3).
Further, using (3.7) and then (3.6) we obtain

N +00
UV(x.i) <y /0 he ™M [ /S lgs (1152, x)) — g5 (T, x*))nx(ds)} pij(x)dt
j=1

N

+00
+3 / re M [ /S lgs (T (£, x)) —qs(x*>||x<ds)} pij(x)d

j=1""

+00
+ / re M [ / llgs (x*)n:c(ds)] dt
0 S
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+00 N N
qu/O A3 pyy I (1, x) — T (1, %) e
j=1

N +00
+Lgy fo he™ pij ()T (1, %) — x| + /S s () 1 (ds)
j=1

+o0 - -
<ALL4/ @MUt x —xyll +b=allx — x| +D
0

<allx|[+b,

where a is given by (4.2),
~ N 400
b=iLy Yy /O ™M pij (OIITLj (1, x) — x|l + / lgs (el (ds)
s
j=1

and
b=b+alx.].
From (3.3) and the fact that ¢(-, x4) is a bounded function, it follows

that b is finite. Since a <1 the proof of the Claim is complete.
From (4.5) it follows that

b
U"V(x,i)<a"V(x,i)+1— for (x,i)eX x1.
—a

Let pe M(X xI) be given and let K C X x I be a compact set such
that ©(K)>1/2. Define i(B)=u(BNK) for BeB(X x I). Further let

A={(x,i)eX x1:V(x,i)<d)},

where d =4b/(1 —a). From the Chebyshev inequality it follows that

Pty =L [ vap
u(A) = P "u(A) > VAdP" i
2 dJxxr

and consequently

8 —

P u(A) =

b
(a"/ Vdi+ )
XxI l—a
/ Vdj.
XxI

A= N —

P

SN
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Since the support of i is compact, the last integral is bounded and the
statement of Lemma 4.2 follows. |

Lemma 4.3. Under the assumptions of Lemma 4.1 the operator P
given by (3.11) is semi-concentrating.

Proof. Define

€(P)={3>0: inf liminf P"u(A) >0 for some AeCs(XxI)}.

neM| n—00

To complete the proof it is sufficient to show that inf £(P)=0. Suppose,
on the contrary, that €=inf £(P) > 0. Let o be given by condition (3.6).
We consider two cases: o <0 and o« >0.

Case 1. Suppose first that « <0. By Lemma 4.2 there exist xg€ X and
r >0 such that

inf  liminf P"j(B(xg,r) x 1) > 0. 4.6
epnf | limin w(B(xo,r) x I)> (4.6)

Fix t, >0 such that
e=3rLL,e"™ <% 4.7)
and set
N 2¢e
C,= U U U (B(qs(l_lj(t,xo)), ?) X 1).
j=lte[r*,2t*]seS

Observe that C, €C,.
According to (3.11), for arbitrary ue M (X x I) we have

P u(cy)
N +00
=S [ [teaae. e
j=1 XxIJ0 S
X pij(x)k(ds)dt P" u(dx di). 4.8)

Let x € B(xp, r) and ¢ > 1, be fixed. Since Z;V:l pij(x)=1, from (3.6)
it follows that there is j € I (depending on x and ¢) such that

T (2, %) — T (2, x0) | < Le™ flx — xol- (4.9)
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Further, by (3.7)
[g”%(nj(f»x)) —qs (T (2, x0)) Il (ds) < Ly I TT(2, x) =TT (2, x0) |-
From the last inequality it follows that
k(S 1 ))) >1/2,
where

S, 15 j) = {s € S:llqs(T1;(t, x)) — g5 (T (2, x0)) |
< 2L |ITLj(t, x) — T (2, x0) ||}

For s € S(x, t; j) with x € B(xg,r) and >, by (4.7) and (4.9) we have

llgs (T1; (2, %)) — g5 (T1; (2, x0)) II < 2Lg ITL; (2, %) — TL; (2, x0) |

<
< 2LLge*" ||x — xoll < 2¢/3.

This means that for every x € B(xg,r) and ¢ > t, there is j €I such that

(qs(nj(tvx))v ]) GCS
and consequently
N
> e (g2 x)), j) > 1.
j=1

From (4.7) it follows that

2ty
Pl = / / re ™M pij(x)ic(ds)dt P" p(dx di)
B(xg,r)x1I Jty S

> Lo (=) P (B, ) x 1),

where y is given by (3.5). From (4.6) and the last inequality it follows that

inf liminf P"u(C.) >0,
pEM (X XI) n—00 i(Ce)

which contradicts to the fact that €=inf £(P). Consequently €=0.
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Case II. Suppose now that o > 0. Then by (4.1) we have LL, < I.
Choose o >0 and ¢, > 0 such that

(140)LLge*™ <1.
Finally choose gy >% such that
e=(1+0)LLse*" gy <%.
By the definition of £(P) there is A €C, such that

= inf  liminf P"u(A)>0. 4.10
P el IR P > 410

We may assume that
A= U B(xg, £0) X I). (4.11)
k=1
Now we define
N
U U UU( (qs (T (2, x2)), )xl)
Jj=11€[0,t,]seS k=1

Let ue M (X x I) be arbitrary. From (4.10) and (4.11) it follows that
there is k, €{1, ..., m} such that

. (4.12)

SRS

" (B (xi, . €0) x 1) >

Further, from (3.6) it follows that for every x;, € X and r e Ry there is jel
(depending on xi, and ¢) such that inequality (4.9) with x;, in place of xo,
holds. Simple calculation shows that

. o
K(S(x, t,Jj, G)) > 150"

where

Sx,t; j,0) = {seS ||qv(l'l (t, x)) qs(l'[j(t,xkn))n
< (14+0) Ly 1T (2, x) = 1 (1, xx,) I}
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Argument similar to that of case I gives

o &
P u(Cy) > Y /Ae—“dt-P”M(B(xkn,eo)><1).

1+o0 0

From the last inequality and (4.12) it follows immediately that

o n yop o
l1nrglor<13fP n(Ce) > Txom (1—e™™).

Since u e M (X x I) was arbitrary and & <, this contradicts to the fact
that €=inf £(P). Consequently €=0 and the proof is complete. ||

5. MAIN RESULTS

Theorem 5.1. Under the hypotheses of Lemma 4.1 the operator P
defined by (3.11) admits an invariant measure.

Proof. By Lemma 4.1 and 4.2 the operator P is essentially nonex-
pansive and semi-concentrating. Thus, the statement of Theorem 5.1 fol-
lows from Proposition 2.2. |

Theorem 5.2. Under the hypotheses of Lemma 4.1 the operator P
defined by (3.11) is asymptotically stable.

Proof. By Theorem 5.1 the operator P admits an invariant measure.
By virtue of Proposition 2.1 it is sufficient to show that for ¢ > 0 there
exists 6 > 0 such that for every two measures i, ur € M{(X x I) there
exist a Borel measurable set A C X x I with diam A <¢ and an integer n
such that

P ui(A)=60 for k=1,2.

Since by Proposition 2.2 the set £(M)) is tight, there exists a compact set
K C X x I such that

4
,u(K)>§ for every peL(My).

Let o be given by condition (3.6). Analogously as in the proof of Lemma
4.3 we consider two cases: @ <0 and o >0.



54 Horbacz et al.

Case 1. Suppose first that « <0. Let ¢ >0 be fixed. Choose t, € R
such that

LL,e® diam K < Z, (5.1)

where L, L, are given by conditions (3.6) and (3.7), respectively.
Define

Kx={xeX:(x,i)eK for some i€}

and

N
Ky=J 0. Kx).
j=1

Clearly Ky and K% are compact subsets of X. For s €S define

~ & k
V@O ={seSilam-aml< forevery yeky). (52

Since V(s) is an open neighborhood of § and § is a compact space, there
exists a finite set {sq,..., sy} such that S=U’}1:1V(sj). Set V;=V(sj), j=
1,...,m, and define

ﬂZj_Ieng(Vj), (5.3)
where
J={je{l,....m}:k(V;)>0}. (5.4)
Obviously @ >0 and )., «x(V;) > 1.

Now for x € Kx we set

O(x):{zer:||q5(l'li(t*,z))—qs(l'li(t*,x))ll<% for s e, iel},
(5.5)
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where t, is given by condition (5.1). Let x1, ..., x,,, € Kx be such that K C
G, where

mo

G=J(0wnx1). (5.6)

=1

Note that G is an open subset of X x I. By compactness and continuity
there exists 7 > ¢, such that

lgs (T 2, %)) — g5 (T (2. ) | < % (5.7)

for every iel, seS, xe Ky and t €[t,, {].

Let py, o € M(X x I) be arbitrary. Set u = (u1 + pu2)/2. Since
L) #9 (see Proposition 2.2) there exists a sequence (ni)r>1 and a mea-
sure v € L(u) such that P" y — v (weakly). Since v(G)>4/5 by the Alex-
androv Theorem there exists ng € N such that

3
PMu(G) = =.
w(G) 1
Consequently,
1
P”OMk(G)>§ for k=1,2.
Therefore there exists I1,l, €{l,...,mg} and iy, ir €I such that
PMuc (V) > i k=1,2, 5.8
wuk(Vi) Y or (5.8)
where

Vie=00xq) x {ix}, k=12
From condition (3.6) it follows that there is an ig e/ such that

lly1 — y2ll < Le*™ |lxy, — xp, I, (5.9)

where

y1=ni0(t*9x[1)v y2=ni0(t*’xlz)~
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Moreover, from condition (3.7) it follows that there exists Sy C S with
k(Sp) >0 such that

llgs(y1) —gs (Y21 < Lgllyt — y2ll - for every s € Sp. (5.10)

Since «(Sp) > 0 there exists an jj € J such that SyN Vy#@, where V=
V(sj,). Fix §eSoNVy. By (5.2), (5.10), (5.9) and (5.1) we have

lgs;, (v2) = gs;, VDI < M1 gs, (v2) — q;(yz)ll + g5 (y2) — C]E()’l)”

+ llgs(y) —gs;, YDl < +L llyr = yz||+12 6+4<§-

™

Define
A=(B(gs;, - 3) UB(g5, 02). 7)) x lio):

Obviously diam A <e.
For s € Vo, x € O(x;,) and ¢ €[t, 7], using (5.7), (5.5) and (5.2) we have

llgs (TLig (2, %)) = s, DI < ligs (T (7, %)) = g5 (T (1, ) |

+ IIqA (Hi0 (1, X)) = qs (TLig (£, x1)) 1| 4+ llgs (1) — g, GO
£ &

N RRTRAT It
This means that
(qs(l'lio(t,x)), io) €A for seVp, xeO(xy), telt, f]. (5.11)
By (3.11), (5.11), (3.5), (5.3) and (5.8) we have
P"t ()

N o0
szx ,/0 fS1A(Qs(Hj(t,x)),j)Ae‘“pij(x)x(ds)dt Py (dx di)

¢
> a0 ioie™ piy sy dr Py dxdiy
Vi dt, JVy

Yo N
> V. Pno V A )\.ldt > 7)\.1* At .
(Vo) P™py ( 1)/ e ZmoN( e
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The same argument shows that the last inequality holds for w5. Since
the constant 8 =y ¥ (e ** —e™*)/(2moN) does not depend on w1 and pu,,
the proof of the first case is complete.

Case II. Suppose now that o >0. We introduce some further notation.
Namely, for se ", iel" and teR]} (ie s=(s1,...,s), t=(f1,...,1;) and
i=(i,...,iy)) wWe set

Qs = (g5, 0" 0(sy,

(gs o T (t, x) = gy, (T, (0. s, (T, (Gt - .., T, (11, X))
dt =dt ---dt,,
ds =dsy---ds,.

Moreover k" stands for the measure on S" generated by « (i.e. «" =

KR QK).

n—times

Since a >0 condition (4.1) implies that L, <1. Let neN be such that

LZ-diamK<lg—2. (5.12)

By continuity and compactness there exists o >0 such that

(s o i) (t, x) — qs(0) || < f—z (5.13)

for every ie 1", se€§", t€[0,0]" and x € K.
Given s S" we define

V(§)={seS”:||qs(x)—q§(x)||<28—4 for every xeKX}. (5.14)

Clearly V(S) is an open neighborhood of . Since §" is compact, there
exists a finite family V; =V(s;), j=1,...,m, such that S":U;’?:le. Set

J={jefl,....m}:k"(V;)>0]}
and

¥ =mink" (V). (5.15)
jeJ

Clearly ¢ > 0. Given x € X we define
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0(x)= {zeX: lgs, (x) —as; (D) < 1‘9—2 for jeJ} . (5.16)

Clearly O(x) is an open neighborhood of x. Let xi,..., x,, € Kx be such
that K C G where G is given by (5.6).

Let p1, uo € My(X x I). Let x;, x,, i1, io and O(x;), O(x;,) be
defined as in Case 1. From condition (3.7) it follows that there exists Sy C
S" such that «"(Sg) >0 and

||‘Is(x11) —CIs(xlz)H <LZ ”xl] _-x12|| fOI' every SESO' (517)
Since Sq is of positive measure, there exists jo € J such that SoyNVy#£0,
where Vo=V(s;,). Choose s) €SypNVy and define
&
4

From (5.12) and (5.17) it follows that diam A <e.
For seVy, iel”, te[0,0]" and x € O(x;,) by virtue of (5.13)—(5.16)
we have

8 .
A= (B(qso(xll)’ )UB(qso(xlz), Z)) X {ip}.

I1(gs © TTi) (t, %) — Gs, ez 1| < 11(gs © TTi) (8, %) — gs (O || + 195 (x) — g5, ()
+”qu0 (X) _qu() (xlk)” + ”qu0 (xlk) - qSO (xlk)” <E.

This means that
((@soI)(t, x),ip)e A for xeO(x;), seVy and te[0,0]". (5.18)
By (3.11), (5.18), (3.5), (5.15) and (5.8) we have

PO i (A)

= Z / / / 1a ((qs o ITj)(t, x))’ in))nne_)‘(tl"‘""i‘fn)
XxI R’_ﬁ_ n

iel”
X piiy (X) Piyip (g5, (£, X))
----- Pin1in@s, (T, (ta—1, ..., T1j; (1, X)) €™ (ds) dt P pux (dx di)

> / / / y A e MOt ) 1 (dg) dt POy (dx di)
V1 J[0,0]" JVy

o n
=>y" (f )ve_Mdl) k" (Vo) P" i (V1)
0

> ¥?
2moN

(I—e?)"  for k=1,2.

This completes the proof. ||
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Theorem 5.3. Assume that hypotheses of Theorem 5.1 hold. Then
the sequence (ji,) of distributions corresponding to process (£,),>0 con-
verges weakly to some distribution i, € M| (X).

Proof. Let [, be the distribution of &,. For arbitrary Borel subset
A of X we have

fn(A) =P(&, GA)ZP((%}:: M) € A X ]):,un(A x1I),

where u, is a distribution of random vector (§,, n,). By Theorem 5.2 there
exists a measure 4 € M{(X x I) such that u, — u. weakly. Obviously
Wy — s (weakly), where ., € M (X) is given by

(A =p(Ax 1) for AeBX). 1
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